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Abstract. This paper introduces a gradient-based reward prediction
update mechanism to the XCS classifier system as applied in neural-
network type learning and function approximation mechanisms. A strong
relation of XCS to tabular reinforcement learning and more importantly
to neural-based reinforcement learning techniques is drawn. The result-
ing gradient-based XCS system learns more stable and reliable in previ-
ously investigated hard multistep problems. While the investigations are
limited to the binary XCS classifier system, the applied gradient-based
update mechanism appears also suitable for the real-valued XCS and
other learning classifier systems.

1 Introduction

Despite the recent encouraging applications of the accuracy-based XCS classifier
system in data-mining problems [1,2,3,4], successful applications in multistep
problems have been restricted to small problems [5,6]. It was shown that without
further additions, XCS is not able to solve environments robustly that allow only
few generalizations or that require a larger number of steps until reinforcement
is encountered [7,8].

Although learning classifier systems (LCSs) were developed within the evolu-
tionary computation community rather independently from reinforcement learn-
ing research, temporal difference learning methods in LCSs can be compared to
reinforcement learning (RL). For example, Q-learning [9] is tightly linked to the
RL mechanism in the ZCS system [10] and the XCS system [5,11]. Besides the
RL relation, LCSs may be viewed as evolutionary-based function approximation
methods. The XCS system, for example, has been shown to be applicable as a
pure function approximator [12].

Over the last years, it has become clear that tabular-based RL scales-up
poorly. Thus, function approximation methods have been applied in the RL lit-
erature [13,14]. These mostly neural-based function approximators can be highly
unstable if direct gradient methods are used to implement Q-learning [14]. Ac-
cordingly, residual gradient methods have been developed to improve robustness
[15].

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 751–762, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



752 M.V. Butz, D.E. Goldberg, and P.L. Lanzi

The aim of this paper is to explore the possibility of applying gradient-based
update methods in LCSs and in particular in the XCS system. We show how
LCSs are related to neural function approximation methods and use similar
gradient-based methods to improve performance. We show that XCS with gra-
dient update methods reaches higher robustness and stability.

The paper is structured as follows. First, we provide the necessary back-
ground knowledge on RL including Q-learning and the gradient approaches.
Next, we introduce XCS and reveal the differences in its RL approach. We con-
sequently extend XCS with a gradient-based update mechanism. The subsequent
performance analysis shows that XCS with gradient descent learns typically hard
multistep problems much more reliable. In conclusion, we discuss the similarities
of XCS, and LCSs in general, with neural-based RL methods and suggest further
comparisons and enhancements.

2 Reinforcement Learning

Reinforcement learning problems are problems in which an agent interacts with
an unknown environment. The environment provides state information and a
numerical reward as feedback to the agent. The agent’s task is to maximize the
cumulative reward on the long run. LCSs essentially face a RL problem.

Most research in RL focuses on problems that can be modeled with a finite
Markov decision process (MDP). An MDP is formally defined by a finite set S of
states; a finite set A of actions; a transition function T (T : S ×A→ Π(S)) that
assigns to each state-action pair a probability distribution (Π(S)) over states S,
and a reward function R (R : S ×A→ IR).

At a certain time t, the agent senses its environment perceiving state st;
based on this state information the agent selects an action at. After the execution
of action at, the agent receives a scalar reward rt+1 and a new state st+1. The
agent’s goal is to maximize the amount of reward it receives from the environment
in the long run. This is usually expressed as the discounted expected payoff which
at time t is defined as follows:

E

[ ∞∑
k=0

γkrt+1+k

]
, (1)

where γ is the discount factor (0 ≤ γ ≤ 1) that specifies the importance of future
reward. The larger γ, the more important are more distant future rewards.

In RL, the agent learns how to maximize the incoming reward by develop-
ing an action-value function Q(·, ·) (or a state value function V (·)) that maps
state-action pairs (or states) into the corresponding expected payoff value (Equa-
tion 1).

2.1 Q-learning

The Q-learning algorithm [9] iteratively approximates the optimal action-value
function Q∗, which maps all state-action pairs to the associated expected pay-
off. Usually, Q∗ is approximated by a tabular state-action representation often
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referred to as tabular Q-learning. At time step t, when the agent senses the en-
vironment to be in state st, and receives reward rt for performing at−1 in state
st−1, the entry Q(st−1, at−1), is updated according to the formula:

Q(st−1, at−1)← Q(st−1, at−1) + β(rt + γ max
a∈A

Q(st, a)−Q(st−1, at−1))

where β is the learning rate (0 ≤ β ≤ 1). Given a RL problem modeled as an
MDP, under adequate hypotheses, Q-learning converges with probability one to
the optimal action-value function Q∗.

2.2 Q-learning with Gradient Descent

Tabular Q-learning is simple and easy to implement but it is infeasible for larger
problems because the size of the Q-table (which is |S| × |A|) grows exponen-
tially in the problem dimensions. To cope with this complexity, approximation
methods need to be used. Particularly, a generalized representation of the op-
timal action-value function Q∗ needs to be learned from a limited number of
experiences. In RL, generalization is usually implemented by function approxi-
mation techniques. Often, gradient descent techniques are used to build a good
approximation of function Q∗ from online experience.

When applying gradient descent to approximate Q∗ online, we are actually
trying to minimize the error between the desired payoff value associated with
the current state-action pair (estimated by r + γ maxa∈A Q(st, a)) and the cur-
rent corresponding payoff estimate Q(st−1, at−1). If the function approximator
is parameterized by a weight matrix W , the change ∆w for each weight w is

∆w = β(r + γ max
a∈A

Q(st, a)−Q(st−1, at−1))
∂Q(st−1, at−1)

∂w
,

where β is the learning rate and γ is the discount factor [14,15,13]. It can be
seen, that the weight update depends both (i) on the difference between the
desired value and the current value associated with the current state-action
pair and (ii) on the gradient component represented by the partial derivate of
the current payoff value with respect to the weight. The gradient component
essentially adjusts the weight update with respect to its relative contribution
to the Q-value estimate. Function approximation techniques that update their
weights according to the equation above are called direct algorithms.

While tabular RL methods can be guaranteed to converge, function approx-
imation methods based on direct algorithms have been shown to be fast but
often unstable [14,15]. To improve the convergence of function approximation
techniques in RL applications, another class of techniques, namely residual gra-
dient algorithms, have been developed [15]. Residual gradient algorithms are
slower but more stable than direct algorithms and, most importantly, they can
be guaranteed to converge under adequate assumptions. Residual algorithms ex-
tend direct gradient descent approaches by adjusting the gradient of the current
state with an estimate of the effect of the weight change on the successor state.
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The weight update ∆w for Q-learning implemented with a residual approach
becomes the following:

∆w = β(r + γ max
a∈A

Q(st, a)−Q(st−1, at−1))[
∂Q(st−1, at−1)

∂w
− φγ

∂

∂w

(
max
a∈A

Q(st, a)
)]

, (2)

where the partial derivative ∂
∂w (maxa∈A Q(st, a)) estimates the effect that the

current modifications of the weight have on the value of the next state. Note
that since this adjustment involves the next state, the discount factor γ must
also be taken into account. Parameter phi weighs the degree of influence of the
next state on the update in the current state.

With this RL knowledge in mind, we now turn to the XCS classifier sys-
tem investigating how XCS approximates the optimal Q-function Q∗ and how
(residual) gradient-based updates can be incorporated into XCS and into LCSs,
in general.

3 XCS in Brief

XCS [5] is essentially a RL method in which generalization is obtained through
the evolution of a population of condition-action-prediction rules (classifiers).
With respect to the usual RL settings in XCS, (i) the population of classifiers
approximates the optimal action-value function Q∗ and (ii) the classifiers and
their parameters roughly correspond to the weight matrix W that is used in
function approximation approaches to generalize over the space of possible so-
lutions. This section gives a short introduction to XCS. A detailed algorithmic
description can be found in [16].

In XCS, classifiers consist of a condition, an action, and four main parameters:
(i) the prediction p estimates the average payoff that the system expects when the
classifier is used; (ii) the prediction error ε estimates the average absolute error of
the prediction p; (iii) the fitness F estimates the average relative accuracy of the
payoff prediction given by p; and (iv) the numerosity num indicates how many
copies of classifiers with the same condition and the same action are present in
the population.

At each iteration, XCS builds a match set [M] containing the classifiers in
the population [P] whose condition matches the current sensory inputs; if [M]
contains less than θnma actions, covering takes place and creates a new classifier
that matches the current inputs and has an unrepresented action. For each possi-
ble action ai in [M], XCS computes the system prediction P (ai) which estimates
the payoff that XCS expects if action ai is performed. The system prediction is
computed as the fitness weighted average of the predictions of classifiers in [M],
cl∈[M], which advocate action ai (i.e., cl.a=ai):

P (ai) =

∑
clk∈[M ]|ai

pk × Fk∑
clk∈[M ]|ai

Fk
, (3)
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where [M ]|ai represents the subset of classifiers in [M ] with action ai, pk refers to
the prediction of classifier clk, and Fk refers to the fitness of classifier clk. Next,
XCS selects an action using, e.g., an epsilon-greedy action selection mechanism
[13] based on the system prediction values P (ai). The classifiers in [M] which
advocate the selected action form the current action set [A]. The selected action
is performed in the environment, and a scalar reward r is returned to XCS
together with a new input configuration.

After the reward r is received and the next match set [M ] is formed with
respect to the resulting sensory input, the prediction value P is computed as
follows.

P = r + γ max
a∈A

P (a). (4)

Next, the parameters of the classifiers in [A] are updated in the following or-
der [16]: prediction, prediction error, and finally fitness. Prediction p and pre-
diction error ε are updated with learning rate β (0 ≤ β ≤ 1),

p← p + β(P − p). (5)

ε← ε + β(|P − p| − ε) (6)

Based on the current prediction error, fitness is updated. The update consists of
three steps successively determining raw accuracy κ, relative accuracy κ′, and
new fitness F :

κ =

{
1 if ε ≤ ε0

α(ε/ε0)−ν otherwise.
(7)

κ′ =
(κ× num)∑

cl∈[A](cl.κ× cl.num)
, (8)

F ← F + β(κ′ − F ) (9)

Parameter ε0 (ε0 > 0) specifies the threshold that determines to what extent
prediction errors are accepted; α (0 < α < 1) causes a strong distinction between
accurate and inaccurate classifiers; ν (ν > 0) and ε0 determine the steepness of
the slope used to calculate classifier accuracy; cl.κ is the raw accuracy of classifier
cl ; cl.num is the numerosity of classifier cl.

On a regular basis depending on the parameter θGA, a genetic algorithm (GA)
is applied to classifiers in [A]. The GA selects two classifiers with probability
proportional to their fitness, copies them, and performs crossover with probability
χ; each allele is mutated with probability µ . The resulting offspring are inserted
into the population and two classifiers are deleted from the whole population to
keep the population size constant.

4 XCS with Gradient Descent

In general, XCS uses Q-learning techniques but can also be compared to a func-
tion approximation mechanism. In this section, we analyze the similarities be-
tween, tabular Q-learning, Q-learning with gradient descent, and XCS. We show
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how to fuse the two capabilities adding gradient descent to XCS’s parameter
estimation mechanism.

4.1 Q-value Estimations and Update Mechanisms

In Section 2.1 we saw that tabular Q-learning iteratively approximates the Q-
table entries using the difference between estimated and experienced reward
signal to adjust the estimate:

Q(st−1, at−1)← Q(st−1, at−1) + β(r + γ max
a∈A

Q(st, a)−Q(st−1, at−1)). (10)

As seen in Section 2.2, in a function approximation approach the Q-table is
approximated by a weight matrix. Using the direct (gradient descent) approach,
each weight w in the matrix W is modified by the quantity ∆w:

∆w = β(r + γ max
a∈A

Q(st, a)−Q(st−1, at−1))
∂Q(st−1, at−1)

∂w
, (11)

where the gradient component ∂Q(st−1,at−1)
∂w is used to guide the weight update.

As seen above, XCS exploits a modification of Q-learning, updating at each
time step t, given current input st and current reward r, the prediction estimates
of each classifier in the action set [A]t−1 of the previous time step by

p← p + β(r + γ max
a∈[A]

P (a)− p). (12)

We can note that while tabular Q-learning only updates one value at each learn-
ing iteration (updating Q(st−1, at−1)), XCS updates all classifiers in the action
set [A]t−1. In fact, each position in the Q-table is represented by the corre-
sponding prediction array value (Equation 3). Comparing the weight update for
gradient descent (Equation 11) and the update for classifier predictions (Equa-
tion 12) we note that in the latter no term plays the role of the gradient. Classifier
prediction update for XCS was directly inspired by tabular Q-learning [5]. Until
now, gradient approaches have not been considered in XCS.

4.2 Adding Gradient Descent to XCS

To improve the learning capabilities of XCS we add gradient descent to the
equation for the classifier prediction update in XCS. As noted above, the value
of a specific state-action pair is represented by the system prediction P (·), which
is computed as a fitness weighted average of classifier predictions (Equation 3). In
general, learning classifier systems consider the rules that are active and combine
their predictions (their strength) to obtain an overall estimate of the reward that
should be expected. In this perspective, the classifier predictions play the role of
the weights in function approximation approaches. The gradient component for
a particular classifier clk in the to-be-updated action set [A]t−1 can be estimated



Gradient-Based Learning Updates Improve XCS Performance 757

by computing the partial derivate of Q(st−1, at−1) with respect to the prediction
pk of classifier clk:

∂Q(st−1, at−1)
∂w

=
∂

∂pk

[∑
clj∈[A]t−1

pjFj∑
clj∈[A]t−1

Fj

]
=

=
1∑

clj∈[A]t−1
Fj

∂

∂pk


 ∑

clj∈[A]t−1

pjFj


 =

Fk∑
clj∈[A]t−1

Fj
. (13)

Thus, for each classifier the gradient descent component corresponds to its rela-
tive contribution (measured by its current relative fitness) to the overall predic-
tion estimate.

To include the gradient component in XCS’s classifier prediction update
mechanism, prediction pk of each classifier clk ∈ [A]t−1 is now updated using

pk ← pk + β(r + γ max
a∈A

P (a)− pk)
Fk∑

clj∈[A]t−1
Fj

. (14)

The other parameters are updated as usual (see Section 3). In the remainder of
the paper we refer to the version of XCS with the prediction updated based on
gradient descent as XCSG.

Due to the contribution-weighted gradient-based update, the estimate of the
payoff surface, that is, the approximation of the optimal action-value function
Q∗, becomes more reliable. As a side effect, the evolutionary component of XCS
can work more effectively since the classifier parameter estimates are more ac-
curate. The next section validates this supposition.

5 Experimental Validation

To evaluate XCSG, we compare its performance to XCS in several typically
used maze environments. The experimental setup distinguishes between learning
problems and test problems as has been usually done in the literature [5]. In
learning problems, the system selects actions randomly from those represented
in the match set and applies all learning mechanisms. In test problems, the
system always selects the action with highest prediction and applies parameter
updates and covering only. Learning problems and test problems alternate. In
the investigated multistep problems, performance is computed as the average
number of steps needed to reach the goal position averaged over the last 50 test
problems. If the goal is still not reached after the execution of 1500 steps in one
problem, the next problem begins. All results reported in this paper are averaged
over 20 experiments.

5.1 The Woods1 Environment

First we apply XCSG to Woods1 (shown in Figure 1a) and compare XCSG’s
performance with that of XCS. Since Woods1 is very simple we do not expect
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Fig. 1. Environments (a) Woods1; (b) Maze6; (c) Woods14. Woods1 is a toroid. Obstacles
(trees) are denoted by T . The goal (food) is denoted by F . Perceived are the eight
neighboring positions starting north and coding clockwise. Actions are possible to the
eight neighboring positions. An action that leads to a position with an obstacle has no
effect.

much difference in the performance of the two systems1. Figure 2 reports the
performance of XCS (dashed line) and XCSG (solid line); as expected there is
almost no difference between the two versions, the problem is very simple, and
both algorithms reach optimality. A closer look at the very beginning of the
experiments shows that XCS learns actually somewhat faster than XCSG. Since
the gradient approach effectively decreases the overall update rate of the reward
prediction, learning is slightly delayed.

 0

 2

 4

 6

 8

 10

 12

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

 T
O

 G
O

A
L

NUMBER OF LEARNING PROBLEMS

OPTIMUM
XCS

XCS WITH GRADIENT DESCENT

Fig. 2. The performance of XCS (dashed line) and XCSG (solid line) in Woods1.

1 In Woods1, parameters were set as follows: N = 1600, P# = 0.6, β=0.2, γ=0.7,
χ=0.8, µ=0.04, θnma=8, pexplr = 1.0, θGA=25, ε0=10, θdel=20. Subsumption is
not applied.
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5.2 The Maze6 Environment

The Maze6 environment (shown in Figure 1b) was shown to be a hard problem
for XCS [7]. Figure 3 reports the performance of XCS (dashed line) and XCSG
(dotted line) in Maze6 2; note that XCS performance is quite far from the op-
timum while XCSG reaches the optimum rapidly and stably. The analysis of
single runs shows that XCS cannot reach optimal performance in many runs. In
contrast, XCSG always reaches full optimality. This suggests that the improve-
ment in XCS performance provided by gradient descent becomes more and more
relevant as the problem complexity increases.

To assure that the gradient approach is effective not only due to the reduced
update rate of the reward prediction estimate, we also compare the performance
of XCSG with that of a modified version of XCS in which the update of clas-
sifier prediction is based on a learning rate βP smaller than the actual learning
rate β used for the update of the classifier prediction error and classifier fitness.
Figure 3 reports the performance of XCS with βP = 0.01 in Maze6 (solid line).
Albeit a smaller learning rate βP does improve XCS performance, the over-
all improvement is far from that of XCSG. Due to the distinct update of the
reward prediction measure in the gradient approach, the reward prediction of
overgeneral (and thus low-fitness) classifiers fluctuates less preventing prediction
overestimations and error underestimations.
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Fig. 3. The performance of XCS with βP = 0.01 (solid line), XCS (upper dashed line),
and XCSG (lower dashed line) in Maze6.

2 Parameter setting in the Maze6 environment: N = 3000, P# = 0.3, β=0.2, γ=0.7,
χ=0.8, µ=0.01, θnma=8, pexplr = 1.0, θGA=100, ε0=1, θdel=20. Subsumption is not
applied.
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5.3 The Woods14 Environment

Woods14 is a particular hard problem for XCS because a long chain of classifiers
needs to be evolved and maintained to reach the goal optimally [8]. Due to the
large number of steps to the food, the prediction error ε0 must be set small
enough to allow XCS to distinguish among small payoff values.3 To speed up
the experiments we reduced the maximum number of steps per problem to 500
steps.

Figure 4 reports the performances of XCS (dashed line) and XCSG (solid
line) in Woods14 4. XCS does not reach even near optimal performance in any
of the 20 runs. In contrast, XCSG reaches the optimum rapidly and stably. The
analysis of single runs shows that in 18 of the 20 runs XCSG was able to reach
optimal performance; in the remaining two runs, XCSG was able to learn the
optimal policy for Woods14 for all the positions except the last one at the end
of the corridor, that is, the position farthest from the goal.
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Fig. 4. The performance of XCSG (solid line) and XCS (dashed line) in Woods14 when
N = 4000.

6 Summary and Conclusions

This paper showed that the addition of a gradient-based update mechanism in
XCS results in more stable and reliable learning. Hard multistep problems, such
as Maze6, which allows only few generalizations, and Woods14, which requires a
3 To be able to reach optimal performance XCS must be able to distinguish be-

tween two payoff values: 1000γ18 and 1000γ19; accordingly, ε0 must be smaller than
1000(1 − γ)γ18/2 = 0.245.

4 Parameters were set as follows in Woods14: N = 4000, P# = 0.3, β=0.2, γ=0.7,
χ=0.8, µ=0.01, θnma=8, pexplr = 0.3, θGA=400, ε0=0.05, θdel=20. Subsumption
was not applied.
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long classifier chain, were both solved reliably. Further investigations with various
population sizes N and other GA thresholds θGA confirmed the robustness of
the mechanism [17].

Interestingly, in the investigated problems, stability was reached without any
residual update addition as it is necessary in neural-network type Q-value func-
tion approximators (see Section 2.2). Residual methods were added in [17] but
did not improve XCS’s performance in the investigated problems.

XCS, and learning classifier systems in general, appear to be somewhat in
between tabular RL mechanisms and neural-based RL mechanisms. Previous
comparison to neural-network learning mechanisms have emphasized the co-
adaptivity in LCSs and the genetic learning component [18]. Our investigations
show that even more importantly the representation significantly differs: XCS
(as our exemplar system) estimates reward not only by one rule, as in a tabular
learning approach, and also not by all rules, as in a neural-network approach,
but by a subset of matching rules. Thus, residual methods may not be necessary
in LCSs because only the matching subset of classifiers is used for the estimation
of a Q-value. The distinction of successive Q-values is realized by classifier condi-
tions instead of classifier weights. Since the evolutionary component evolves the
conditions, the distinction of successive Q-values is realized by the evolutionary
component and not by the reinforcement component in LCSs.

The successful application of neural-network type mechanisms suggests fur-
ther comparisons between XCS, LCSs, and neural-network learning and function
approximation mechanisms. Classifier conditions, evolved by an evolutionary
mechanism, effectively identify independent problem subspaces. This property
appears to be highly similar to the development of kernel methods in neural-
networks, in which different kernel types result in different spatial separations.
The extension of LCSs to kernel-based condition parts appears to be an inter-
esting future research direction. The real-value extension of XCS may be seen as
a first step in this direction [1,12]. Future research will show in which problems
the more explicit, rule-based spatial problem separation in conjunction with an
evolutionary learning component in LCSs may be advantageous in comparison
with neural-network type learning mechanisms.
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